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ABSTRACT

Different approaches for representing model error due to unresolved scales and processes are compared in

convective-scale data assimilation, including the physically based stochastic perturbation (PSP) scheme for

turbulence, an advanced warm bubble approach that automatically detects and triggers absent convective

cells, and additive noise based on model truncation error. The analysis of kinetic energy spectrum guides

the understanding of differences in precipitation forecasts. It is found that the PSP scheme results in more

ensemble spread in assimilation cycles, but its effects on the root-mean-square error (RMSE) are neutral.

This leads to positive impacts on precipitation forecasts that last up to three hours. The warm bubble

technique does not create more spread, but is effective in reducing the RMSE, and improving precipitation

forecasts for up to 3 h. The additive noise approach contributes greatly to ensemble spread, but it results

in a larger RMSE during assimilation cycles. Nevertheless, it considerably improves the skill of precipi-

tation forecasts up to 6 h. Combining the additive noise with either the PSP scheme or the warm bubble

technique reduces the RMSE within cycles and improves the skill of the precipitation forecasts, with the

latter being more beneficial.

1. Introduction

An ensemble Kalman filter (EnKF, Evensen 1994)

uses the flow dependency from an ensemble of back-

ground states to construct the background error co-

variance. However, a number of factors can affect the

soundness of the background error covariance, such as

the validity of Gaussian assumptions, unbalanced cor-

relations among variables, sampling error due to the

limited size of ensemble and model error due to poorly

resolved physical processes and physics parameteriza-

tions at subgrid scale. In the context of convective-scale

data assimilation, it is important that the background

error covariance captures uncertainties on the smallest

resolvable scales as well as effects on the resolved scales

of subgrid-scale uncertainties. Deficient representation

of model error will usually lead to overconfidence of the
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ensemble, eventually deteriorating the performance of

convective-scale data assimilation and consequently the

quality of the subsequent forecasts.

To account for model error, different forms of methods

are available. For instance, relaxation methods such as

the relaxation to prior perturbations (RTPP; Zhang et al.

2004) and relaxation to prior spread (RTPS; Whitaker

and Hamill 2012) are usually used to take unknown

sources of model error into account. However, these

methods are ad hoc andmay be associated with problems

like smoothing of background errors or unbalanced

model states as shown in Zeng et al. (2018). Zeng et al.

(2019) supplemented the large-scale additive noise

(LAN) derived from global climatological atmospheric

background error covariance with the small-scale ad-

ditive noise (SAN) using random samples of model

truncation error. This combination of additive noise

inherently provides information on large/synoptic-scale

model uncertainties arising from the lateral boundary

conditions and small/unresolved-scale error due to

the limited resolution. Zeng et al. (2019) showed that

use of this additive noise considerably improved 6-h

precipitation forecasts, especially under weak forcing

synoptic conditions. However, this method is not flow

dependent.

In addition to these techniques, there are other

methods initially used in probabilistic forecasting, such

as stochastically perturbed parameterization tendencies

(SPPT; Buizza et al. 1999), the multiphysics approach

(Murphy et al. 2004), the stochastic kinetic energy

backscatter (SKEB; Shutts 2005) and the physically

based stochastic perturbation scheme (PSP; Kober and

Craig 2016; Rasp et al. 2018) for representing un-

resolved boundary layer turbulence. Although the SPPT

and SKEB are usually implemented in the global

models, they have recently also proved useful for some

convection-permitting models, such as the SPPT in the

Applications of Research to Operations at Mesoscale

(AROME; Bouttier et al. 2012) model or the SKEB in

the Weather Research and Forecasting (WRF) Model

(Berner et al. 2015; Duda et al. 2016) model. Furthermore,

some methods mentioned above are applied more and

more in data assimilation. For instance, the SPPT was

incorporated into an ensemble transform data assimi-

lation system by Reynolds et al. (2008) and a desired

increase in initial variance in the tropics was achieved.

Fujita et al. (2007) and Meng and Zhang (2008) showed

in their mesoscale data assimilation experiments that

better background error covariance and mean can be

obtained by using multiphysics schemes. The SKEB

scheme was used in ensemble data assimilation experi-

ments by Leutbecher et al. (2007), however, it led to still

underdispersive analysis ensembles.

There are numerous studies that compare the per-

formance of different methods as well as various com-

binations of them.Houtekamer et al. (2009) showed that

the additive isotropic model error perturbations are

very effective to improve the innovation statistics

and the multiphysics approach has relatively small but

clearly positive impacts. Therefore, both are utilized in

the operational EnKF for medium-range forecasts of

the ensemble prediction system at the Meteorological

Service of Canada, however, the additional use of the

SKEB and SPPT could not further improve the results.

Whitaker and Hamill (2012) compared the combina-

tion of the RTPS and additive noise (based on random

samples of model truncation error) with the combina-

tion of the RTPS and SKEB in their idealized global

case study, and concluded that the latter combination

could hardly improve the former one. Hamrud et al.

(2015) showed with the ECMWF Ensemble Prediction

System that extending the baseline system consisting of

the RTPS only with additive noise (based on a clima-

tology of forecast differences (48 minus 24 h) valid at

the same time) or the SPPT can both further improve

ensemble mean forecast skill scores, but the combina-

tion of the RTPS and the additive noise is adopted as

the standard configuration because it leads to more

improvements. The additional use of the SPPT in

the standard configuration cannot lead to further im-

provements. Ha et al. (2015) combined adaptive multi

plicative inflation (Anderson 2009) with the SKEB

and with the multiphysics approach, respectively, using

the WRF-DART (Anderson et al. 2009) system, and

showed the first combination consistently outperforms

the second one in innovation statistics and mesoscale

forecasts. Bowler et al. (2017) use a quasi-operational

4DEnVar system at Met Office and combined the

RTPP or the RTPS with the control run that included

random parameters, the SKEB and the additive noise

(based on random draws of samples for analysis in-

crement Piccolo and Cullen 2016), and they found that

the RTPP was effective in maintaining spread but it

also produced too large-scale and too balanced per-

turbations, and the RTPS required an unusual relaxa-

tion factor greater than one to generate sufficient

spread. The combination of the RTPP and RTPS

turned out to be the best.

Another technique that does not fall into any cate-

gories mentioned above but proves to be useful for

storm-scale data assimilation is to create convective

plumes by triggering warm bubbles. The technique

is well-known from idealized convection studies of

Weisman and Klemp (1982) to forcibly trigger con-

vection if the environmental atmospheric condi-

tions are favorable but the ‘‘natural’’ trigger is missing.
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This technique was first used in data assimilation by

Dowell et al. (2004), in which warm bubbles were

added at random locations close to the storm in each

initial ensemble member. It was compared with the

additive noise based on random smoothed perturba-

tions in Dowell and Wicker (2009), in which the latter

one reduced the amount of spurious convection dur-

ing the data assimilation. But it should be noted that in

that study the storm location was a priori known and

warm bubbles were triggered only at the initial time

and not used during the data assimilation to mitigate

model error.

In this work, a more advanced warm bubble approach

automatically detecting and triggering absent convec-

tive cells in a simulation is introduced. The convection-

permitting numerical weather prediction (NWP)models

are able to mimic realistic convective dynamics, how-

ever, they often fail to capture processes that trigger

convection if they occur below the simulation resolu-

tion. During the data assimilation cycles, if a convective

cell is missing in all ensemble members, the Gaussian-

based data assimilation scheme cannot recover it in the

analysis either. As possible remedy, the warm bubble

technique will be applied during assimilation cycles, aim-

ing to initiate convective cells that are observed by radars

but missing in model runs: If a member misses one con-

vective cell, a warm bubble is added to the planetary

boundary layer at that location. If the member has enough

instability, the rising warm bubble will trigger a cell during

the next 10–15 min in a nonlinear and (thermo-) dynami-

cally consistent way up to the level neutral buoyancy.

Different members will have different instabilities and will

react differently to the bubble.

It can be noticed that there are quite a number of

different methods available for the representation of

model error for various sources and scales, and the

performance of different combinations has been ex-

plored.However, few studies focus on the comparison of

methods accounting for subgrid-scale model error in the

context of convective-scale data assimilation. In this

article, we will compare the PSP, the SAN, the new

warm bubble technique and their combinations. The

PSP scheme adds the small-scale instability to the

boundary layer to account for unresolved physical pro-

cesses. The amplitude of the perturbations corresponds

to different types of synoptic forcing. Kober and Craig

(2016) showed that the PSP increased overall the turbu-

lent variability and had neutral effects on the root-mean-

square error (RMSE) of surface wind and temperature

forecasts. Therefore, one may expect that the application

of the PSP in the ensemble data assimilation should have

more impact on increasing the ensemble spread than

decreasing the RMSE of atmospheric states. The new

warm bubble technique attempts to adjust model states

based on the real-time observations; therefore, its ap-

plication in ensemble data assimilation could lead to

reduction of the RMSE of atmospheric state but it adds

only positive perturbations and could not effectively

increase the overall ensemble spread since its pertur-

bations are very local, and it targets only very rare high-

impacts events. Besides, both the PSP and the warm

bubble technique are designed to increase kinetic en-

ergy of analyses at smaller scales and to favor initiation

of convection. But these two methods trigger convec-

tion in different manners. Therefore, we expect that

their impact on the kinetic energy spectra andprecipitation

forecasts are different. Moreover, as shown in Zeng et al.

(2019), the SAN added dual signed perturbations and re-

sulted in more ensemble spread. However, the SAN is a

flow-independent statistical scheme that might not be able

to reduce the RMSE of atmospheric states. Based on the

potential effects on the spread and RMSE, one may an-

ticipate that the combination of the SAN and the warm

bubble technique complement each other more than the

combination of the SAN and the PSP. To investigate

those hypotheses, several studies are carried out during a

convective period in Germany with weak synoptic forc-

ing, using the operational Kilometre-scale Ensemble

Data Assimilation (KENDA) system of the Deutscher

Wetterdienst (DWD) (Schraff et al. 2016). The perfor-

mance within data assimilation cycles and subsequently

the skill of forecasts are investigated.

The paper is organized as follows. Section 2 briefly

introduces the methods and describes the warm bubble

technique. Section 3 gives the experimental setup and

section 4 presents the results of different studies by in-

vestigating the spread, RMSE, kinetic energy spectrum

and precipitation forecasts skill scores. Section 5 sum-

marizes the obtained results.

2. Approaches for representation of model error

In this section, we introduce the LAN and three

methods that aim at representing subgrid-scale model

error, including the SAN, the PSP scheme, and the new

warm bubble technique. For the last method, a detailed

description is given.

a. Additive noise

To represent model error on multiple scales (Zeng

et al. 2019), two types of additive noisemethods are used

in this study.

1) LARGE-SCALE ADDITIVE NOISE (LAN)

As in Zeng et al. (2018), the LAN, derived from the

climatological atmospheric background error covariance
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Bmatrix of the global EnVar data assimilation system for

the ICON (ICOsahedral Nonhydrostatic, Zängl et al.

2015) model, is applied. The B matrix is constructed

vertically by using the NMC method and horizontally by

compactly supported functions. The LAN should repre-

sent large-scale uncertainties arising from the global

driving model ICON.

The LAN is executed at the analysis step [i.e., a ran-

dom sample h
(i)
l ]. Based on the Bmatrix is added to the

analysis ensemble member xa(i) as follows:

xa(i) ) xa(i) 1a
l
h
(i)
l . (1)

where al is a tunable parameter and set to 0.1 to mimic

model error of 1-h forecasts. The LAN is based on 1-yr

NMC-statistics that are originally designed to represent

the background error of 3-h forecasts. More details

about the implementation of the LAN can be found in

Rhodin et al. (2013) and Zeng et al. (2018).

2) SMALL-SCALE ADDITIVE NOISE (SAN)

As in Zeng et al. (2019), the SAN, based on random

draws from a set of samples for model truncation error

(Hamill and Whitaker 2005), is used for convective-

scale data assimilation. To create the set of samples,

the COSMO-DE model is run with a high resolution

of 1.4 km for a 2-week period in 2014 over Germany,

governed by a low-pressure cyclone and associated

with severe thunderstorms. The hourly outputs of

model forecast runs at resolution of 1.4 km are then

interpolated (via the program INT2LM, Schättler
2014) onto the coarse 2.8 km grid and serve as initial

conditions for 1-h COSMO-DE forecast runs at res-

olution of 2.8 km. Therefore, each difference be-

tween high- and low-resolution forecast runs at a

same forecast valid time provides a sample for model

truncation error. As the LAN, the SAN adds a random

sample h(i)
s from the set to the analysis ensemble

member xa(i):

xa(i) ) xa(i) 1a
s
h(i)
s : (2)

Coefficient as5 1.25 has been tuned inZeng et al. (2019)

under weak and strong forcing synoptic situations. Its

value is similar to 1.20 used by Hamill and Whitaker

(2005) for their application. The coefficient as is slightly

larger than one since these samples of the model trun-

cation error still cannot capture all small-scale pro-

cesses. To ensure that additive noise effects the analysis

ensemble covariance without changing the ensemble

mean, the mean hs 5 1/Ne�Ne

i51h
(i)
s is subtracted from

each randomly chosen sample (Whitaker et al. 2008),

where Ne is the ensemble size (the same is also done for

the LAN). More details about the description of the

SAN can be found in Zeng et al. (2019).

b. Stochastic boundary layer perturbations

The physically based stochastic perturbation scheme

(PSP) for turbulence was first introduced by Kober and

Craig (2016) and it has been conceptually revised by

Rasp et al. (2018). The PSP scheme injects variabil-

ity into the boundary layer based on the unresolved

turbulence with the aim to improve the coupling be-

tween subgrid turbulence and resolved convection in

kilometer-scale models. It is formulated as an additive

perturbation scheme to the parameterized tendencies of

each variable F 2 {temperature T, relative humidity qy,

vertical velocity w}:

�
›F

›t

�
total

5

�
›F

›t

�
param

1a
p
h

1

t
eddy

l
eddy

Dx
eff

ffiffiffiffiffiffiffi
F02

q
, (3)

where teddy 5 10 min, leddy 5 1km are typical time and

length scales for convective boundary layer eddies, and

Dxeff 5 5Dx is the effective model resolution (Bierdel

et al. 2012);
ffiffiffiffiffiffiffi
F02

q
is the subgrid standard deviation

computed in COSMO’s turbulence scheme, which is a

1.5-order local closure (Raschendorfer 2001; Mellor and

Yamada 1982). h is a two-dimensional random field with

horizontal correlation length 5Dx. A new random field is

generated every 10 min, during which it is held constant.

The T, qy, and w perturbations are correlated by using

the same random field h (i.e., they have the same sign).

This is physically reasonable since the upward branch

in a hypothetical subgrid eddy is warm and moist. The

amplitudes of the perturbations are determined from

the subgrid variances computed in the boundary layer

scheme. These variances are also correlated (Mellor and

Yamada 1982). Finally, ap is set to 7.2.

The effect of the PSP scheme is twofold: first, it trig-

gers more and earlier convection in situations with weak

synoptic forcing (Keil et al. 2019). Second, it causes a

quick error growth on convective scales if used in an

ensemble forecasting setting.

c. Warm bubble

In this work, we present a newwarm bubble technique

that is more advanced than the one in Dowell et al.

(2004) and Dowell and Wicker (2009) because it can

automatically determine where to initiate warm bubbles

in the model, based on the comparison of radar obser-

vations with the model counterpart simulated by the

radar forward operator EMVORADO (Zeng et al.

2014, 2016). This technique consists of detection and

triggering algorithms and is meant to compensate for

well-known underrepresented triggermechanisms in the
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model itself (model errors), caused by, for example,

too coarse grid resolution to resolve small-scale oro-

graphic lift or subgrid-scale perturbations by shallow

convection.

The detection algorithm works on the radar reflec-

tivity composite, obtained by interpolation of radar

scans at elevation of 0.58 onto the COSMO-DE grid. In

case of overlapping by several radars, the maximal re-

flectivity value is taken. The composite covers the en-

tirety of Germany and part of the neighboring countries.

The detection algorithm searches for continuous regions

of reflectivities above the threshold value t1 by checking

the neighboring grid points. A continuous region is

defined as a convective feature if two conditions are

fulfilled: first, it contains at least n1 grid points in

the region; second, at least n2 grid points exceed the

threshold value t2 (note that t2 . t1). The second con-

dition indicates existence of a cell core, for instance, t25
30 dBZ is a typical value for mid-European supercells.

Once a convective feature is detected, we use the prin-

cipal component analysis to find the best ellipse that

matches the region. The resulting ellipses can then be

optionally enlarged by multiplying the axis lengths

with a factor men or by adding extra length madd to the

axes. This option has been introduced to avoid bubbles

being triggered too close to existing convection in the

model. A sketch of the detection algorithm is given in

Fig. 1. All parameters of the detection algorithm used in

this study are summarized in Table 1. In the present

work, the same parameter values are used for both ob-

servations and model to detect convective cells. Note

that it is usually enough to find missing convective cells

in composite of a single radar elevation for efficiency

reasons. Figure 2 illustrates an actual case, in which six

missing convective cells are found.

Once the missing cells are detected, the goal of the

triggering algorithm is to initiate convection in those

regions in the model. It first searches for ellipses that are

identified as convective cells by the detection algorithm

in observations but do not overlap with any ellipses in

the model. At those locations, the temperature will be

instantaneously increased (while keeping relative hu-

midity constant). The perturbed volume has a fixed

ellipsoid shape as illustrated in Fig. 3. In the horizontal,

the volume center is set as each ellipse center with

horizontal axis lengths Dx and Dy. In the vertical, the

volume center is Hz above ground level. Dz is the ver-

tical axis length. The maximum temperature distur-

bance DT is at the center and it decreases toward

the ellipsoid border following a cosine function within

[0, p/2]. The bubbles are allowed to freely develop and

produce realistic convection if the preconvective envi-

ronment is favorable. A simulation that a triggered

warm bubble evolves to convection is demonstrated in

Fig. 4. All triggering parameters used in this study are

given in Table 2. It should be mentioned that those

TABLE 1. Parameters and their values used in the detection algo-

rithm for model and observation.

Dectection parameter Model Observation

t1 (dBZ) 25 25

t2 (dBZ) 30 30

n1 (grid point) 15 15

n2 (grid point) 4 4

men 1.0 1.0

madd (km) 10 10

FIG. 1. Sketch of the detection algorithm: Observed cells are

denoted with black thick lines. Simulated cells are denoted with

gray thick lines. Dashed black (gray) lines are contour lines of re-

flectivity for observations (simulations). Ellipses with axes in black

(gray) thin lines are determined by principal component analysis.

In each individual cell, N ($t2) means the number of grid points

with reflectivities exceeding the threshold value t2. The observed

cell 1 is identified as a convective cell and it overlaps with the

simulated cell 1, therefore, it is not a missing cell. The observed cell

2 is also identified as a convective cell but there is no overlap with

any simulated cells, so it is a missing cell. The simulated cell 2 does

not satisfy N ($t2)$n2, it is thus not considered as a convective

cell. Blue thin lines in the background indicate the model grid.
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parameters have been tuned, so that relatively balanced

states can be achieved. We have also tried more ag-

gressive configurations (e.g., larger Dx,y and DT), but

they tend to generate too many spurious gravity waves

above the tropopause, probably because the warm

adjustment is not mass balanced. Although more

convective clouds can be created, they also decay

very fast. Consequently, good results are not possible

within assimilation cycles, nor in subsequent fore-

casts. We have also tested including moisture pertur-

bations in the bubble, but the results were very similar

(not shown).

The detection/triggering algorithm is run indepen-

dently for each ensemble member and every 15 min.

This time allows for the early development of convective

cells, so that warm bubbles will not be repeatedly trig-

gered in the same position.

3. Experimental setup

We perform data assimilation experiments using the

LETKF (Hunt et al. 2007) of the KENDA system at the

DWD. Observations are assimilated hourly, which in-

clude conventional observations (e.g., TEMP, PROF,

AIREP and SYNOP) as well as radar reflectivity and no-

precipitation observations (i.e., #5dBZ). Furthermore,

radar reflectivity observations are temporally thinned

(i.e., only the latest 5 min of radar observations before

the analysis time are assimilated). The size of the

ensemble Ne is 40 and twenty members are used for

6-h ensemble forecasts that are initialized at 1000,

1100, . . . , 1700, and 1800 UTC. A detailed description

of the KENDA system and the implementation of the

LETKF is given in Schraff et al. (2016), Bick et al.

(2016), and Lange and Janjić (2016). More details

about treatment (e.g., specification of observation

error, localization and superobbing) of observations

(especially radar reflectivity) are available in Zeng

et al. (2018).

FIG. 3. Sketch of the triggering algorithm: the perturbed volume

has a fixed ellipsoid shape. In the horizontal, the volume center is

set as the ellipse center with horizontal axis lengths Dx and Dy. In

the vertical, the volume center is Hz above ground level; Dz is the

vertical axis length. The maximum temperature disturbance DT is

at the center and it decreases toward the ellipsoid border following

a cosine function within [0, p/2].

FIG. 2. An example of detecting missing convective cells in COSMO-DE domain. The red ellipses indicate well-

defined convective features. (left) Observation and (right) model simulation of radar reflectivity; 5 indicates the

identified missing cells in model simulation. In this case, six missing convective cells are found.
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The COSMO model is convection-permitting, fully

compressible and nonhydrostatic (Baldauf et al. 2011;

Doms et al. 2011; Doms and Baldauf 2018). The number

of grid points are 421 3 461 3 50 and the horizontal

grid spacing is 2.8 km. The one-moment microphysical

scheme Lin et al. (1983) and Reinhardt and Seifert

(2006) is used. The ensemble prediction system (EPS) of

the operational global ICON model provides lateral

boundary conditions.

In the present work, we choose a week from 3 June to

10 June 2016. This period was under weak synoptic

forcing conditions with many scattered convective cells

FIG. 4. Illustrative example of development of convection triggered by the warm bubble

technique.
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over Germany (Zeng et al. 2018). Experimental setups

are given in Table 3. Three studies are carried out, in

which the LAN will be always applied but different

techniques for representation of subgrid-scale model

error will be used in different studies. In the first study,

the reference experiment E_BASE is compared to E_P,

in which the PSP scheme is applied in addition to the

LAN; In the second study, E_BASE is compared to

E_B, in which the warm bubble technique is applied in

addition to the LAN. One may worry that radar re-

flectivity observations are used twice for detection of

missing cells as well as for assimilation, which may

conflict with the assumption underpinning data assimi-

lation that observation errors and background errors are

independent from each other. However, there are sev-

eral studies (e.g., Dowell and Wicker 2009; Sobash and

Wicker 2015; Hu et al. 2019) in practice, which use the

reflectivity observations both for additive noise and for

assimilation. Furthermore, the assimilation window is

1 h in this work, the detection algorithm is run every

15 min, and only the latest 5 min of radar observations

before the analysis time are assimilated; therefore,

only a small portion of observations used for the de-

tection algorithm are also assimilated and thus the

assumption is very mildly violated. In the third study,

E_BASE is compared to E_SAN that combines the LAN

with the SAN. Detailed comparisons between E_BASE

andE_SANcanbe found inZenget al. (2019). Furthermore,

two other experiments E_SANP and E_SANB with

additional use of the PSP scheme or warm bubble

technique are performed. Instead of E_BASE, E_SAN

is chosen as the reference experiment in the third study.

4. Experimental results

We hypothesized in the introduction that the use of

the PSP scheme in ensemble data assimilation should be

effective in increasing the ensemble spread due to its

perturbations over the full domain, but it might not be

able to reduce the RMSE (see Study 1). The application

of the warm bubble technique might help to reduce the

RMSE due to the adjustment to real-time observations,

but it might not be good at increasing the spread since

the perturbations are fairly local (see Study 2). Both

methods are supposed to increase kinetic energy of

analyses at smaller scales and trigger more convec-

tion. However, their impacts on the kinetic energy

spectra and precipitation forecasts may be different

and can be explored. In addition, the SAN results in

larger spread but it might not produce smaller RMSE

because its perturbations are random and lack flow

dependency. Based on effects on the RMSE and

spread, it seems that the combination of the SAN and

the warm bubble technique might compensate each

other more than the combination of the SAN and the

PSP (see Study 3).

In the following, we will use several metrics to

compare the performance of experiments. Besides the

spread and RMSE for assimilation cycles, we use

fractions skill score (FSS; Roberts and Lean 2008) and

false alarm rate (FAR) for precipitation forecasts.

More details about the calculation of FSS and FAR

can be found in Zeng et al. (2018). For verification by

the RMSE, FSS, and FAR, the differences relative to

the reference run are computed. The bootstrap ap-

proach is applied to take uncertainties in verification

scores into account. 10 000 bootstrap resampling is

performed to check the statistical significance at 95%

confidence intervals, using the bootci() function of

Matlab R2019b with bias-corrected and accelerated

bootstrap (BCa bootstrap, Efron 1987). In addition, a

spectral analysis of horizontal and vertical kinetic

energy based on the comparison to E_BASE is carried

out for short-term forecasts. At scales smaller than

300 km, the horizontal kinetic energy is strongly re-

lated to the amount of convective precipitation as

shown by Selz et al. (2019). One goal of the spectral

analysis here is to examine if the improvements in

precipitation forecasts correspond to the added kinetic

energy. Furthermore, we divide the horizontal kinetic

energy into divergent and rotational parts to show the

impacts of different methods in more details.

TABLE 3. Experimental setup: ✓ means ‘‘on’’ and 3 means ‘‘off.’’

EXP LAN PSP Warm bubble SAN

Study 1

E_BASE ✓ 3 3 3
E_P ✓ ✓ 3 3

Study 2

E_BASE ✓ 3 3 3
E_B ✓ 3 ✓ 3

Study 3

E_BASE ✓ 3 3 3
E_SAN ✓ 3 3 ✓

E_SANP ✓ ✓ 3 ✓

E_SANB ✓ 3 ✓ ✓

TABLE 2. Parameters and their values used in the triggering

algorithm.

Bubble parameter Model

Dx,y (km) 10

Hz (km) 2

Dz (km) 4

DT (K) 1.5
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a. Study 1

Figure 5 illustrates the vertical profiles of relative

differences (%) in the background ensemble spread

of E_P for model states T, qy, w, and u, compared to

E_BASE. For T, E_BASE and E_P are almost undis-

tinguishable. For qy and u, E_P has slightly larger spread

than E_BASE below model level 10 (;10km); for w,

E_P is considerably larger than E_BASE for the whole

profile. This is the result of more convection being

triggered by the PSP scheme, increasing variability of w

in the troposphere.
Figure 6 also shows the vertical profiles of relative

differences (%) in the background ensemble spread of E_P

but for the radial wind. Additionally, the vertical profiles of

relative differences in the RMSE of background ensemble,

verified against the radial wind, are also given (note that

radial wind is not assimilated and thus it is an inde-

pendent validation dataset). It is worth noting that the

spread of E_BASE is adequate based on the spread

skill ratio (Aksoy et al. 2009) as shown in Zeng et al.

(2018). The spread of E_P is larger than that of

E_BASE and the discrepancies decrease with the in-

creasing height. The RMSE of E_P is slightly larger

than that of E_BASE in the atmosphere lower than

2 km and slightly smaller around 4 km.

Table 4 gives the relative changes (%) of kinetic en-

ergy (in spectrum space) of analyses (initial states) in

E_P compared to E_BASE for different scales and

heights. Similar as Selz et al. (2019), we focus on the

wavelength range between 14 and 1000km, and for ease

FIG. 5. Vertical profiles of relative differences (%) in background ensemble spread of E_P and E_B, relative to

E_BASE, averaged over all data assimilation cycles, for model state variables (top left) T, (top right) qy, (bottom

left) w, and (bottom right) u. The vertical dashed line indicates no difference relative to E_BASE.
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of discussion, the wavelengths are divided into 14–100,

100–300, and 300–1000km, which may roughly repre-

sent convective scale, mesoscale, and synoptic scale,

respectively. The spectra of horizontal kinetic energy

(KE) are calculated by the sums of energy spectra of

divergent (DIV) and rotational (ROT) wind. In addi-

tion, the relative changes of vertical kinetic energy

(KEW) are also given. It should be noted that the

spectra of KE are steep and most of KE is gathered at

larger scales but the spectra of KEW are fairly flat (not

shown). At 10 km, the gains of DIV and ROT are larg-

est at 14–100km and decrease rapidly with increasing

wavelengths, and the reduction of ROT at 300–1000km

even leads to smaller total KE. At 5 km, marginally

smaller DIV and ROT are present at 100–300 km while

marginally larger DIV and ROT at other wavelengths.

Regarding KEW, the largest gains occur at 14–100km at

both heights and decline fast with larger scales. Table 5

gives the relative gains of kinetic energy of 1-h forecasts.

In general, the gains in KE have decayed a bit while the

gains in KEW have remarkably decreased for all scales

and heights. The rapid decay of vertical velocity per-

turbations is a known issue with the PSP scheme that

has been corrected in the most recent version Hirt

et al. (2019).

Figure 7 compares E_BASE and E_P with the radar

reflectivity observation composite (at elevation of 0.58
at the initial time (1000 UTC 6 June 2016) and in the

2-h forecast. The ensemble probability (the number of

ensemblemembers exceeding a threshold (here 20dBZ)

divided by the size of ensemble) is shown. At both times,

the intensity and locations of observed reflectivities are

well captured by both E_BASE and E_P, whereas the

latter one leads to a general increase in the probability

(e.g., at the marked locations), as would be expected

from the analysis of Kober and Craig (2016), but this

effect is small.

For the verification of 6-h ensemble forecasts against

the observed radar-derived precipitation rate, Fig. 8

shows the ensemble mean areal coverage (%) of hourly

accumulated precipitation rate exceeding the threshold

values 1.0 and 5.0 mmh21 over the radar precipitation

scanning domain (see Fig. 2 of Hirt et al. 2019), aggre-

gated hourly over all forecasts initiated at 1800 UTC.

For 1.0mmh21, it is noticed that both mean areal cov-

erages of E_BASE and E_P underpredict the precipi-

tation but the latter one results in slightly more events.

Some ensemblemembers overestimate the precipitation

at the last 3-h forecast lead times. Similar can also be

seen for 5.0mmh21 except that overestimation by some

members occur at third and fourth lead times. Figure 9

illustrates the FSS (for different scales, i.e., 14, 70, and

140 km) and FAR values for threshold value 1.0 and

5.0mmh21, as a function of forecast lead time. With

respect to the FSS, E_P is slightly better than E_BASE

for 1.0mmh21 but the differences are not statistically

significant for all scales; For 5.0mmh21, E_P is consid-

erably better than E_BASE with statistical significance

FIG. 6. Vertical profiles of relative differences (%) in (left) background ensemble spread and (right) RMSEof the

radial wind in E_P andE_B, compared to E_BASE, averaged over all data assimilation cycles For the RMSE, filled

dots mean that differences are statistically significant at 95% confidence intervals, no dots mean no statistical

significance.
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up to 4 h before they approach for all scales. It is inter-

esting to note that although the areal coverage of pre-

cipitation exceeding a threshold is increased in E_P, the

FAR is decreased. This suggests that the increased en-

semble spread allows the data assimilation to better lo-

cate convective cells, even though the negative bias is

only partially corrected.

To conclude, the additional application of the PSP

scheme within the data assimilation cycles results in

more background ensemble spread of specific model

states (i.e., qy, u, and w) but its influences on the RMSE

seems to be neutral. Furthermore, it produces analy-

sis model states with more horizontal and vertical ki-

netic energy at convective and mesoscales. The added

horizontal energy weakens slowly in 1-h forecasts

whereas the added vertical energy dissipates much

faster. However, with respect to precipitation fore-

casts, its positive impacts linger about 3 h.

b. Study 2

For the comparison of background ensemble spread

for model states, it can be seen in Fig. 5 that E_B pro-

duces slightly larger spread than E_BASE for w for the

whole profile, probably due to more convection trig-

gered by warm bubbles. However, no clear differences

are visible forT, qy, and u. Similarly, E_B does not result

in more background ensemble spread than E_BASE for

the radial wind as shown in Fig. 6. It should be due to the

fact that the perturbations of the warm bubble technique

are fairly localized. However, the RMSE of E_B is

overall smaller. It seems that the introduction of warm

bubbles has not only the potential to recover missed

convective cells but also to improve the atmospheric

state within the assimilation cycles.

Figure 7 also compares E_BASE and E_B with the

radar reflectivity observation composite. It can be seen

that E_B is better thanE_BASE at themarked locations

at the initial time and 2-h forecast.

With respect to the areal coverage of hourly accu-

mulated precipitation in 6-h ensemble forecasts, it is

shown in Fig. 8 that for the threshold value 1.0mmh21

E_B results in more events than E_BASE at the first

and last 2-h forecast lead times. For 5.0mmh21, E_B

is slightly larger than E_BASE for all lead times.

Furthermore, the FSS is given in Fig. 9. For the threshold

value 1.0mmh21 and the scale 14 km, it is noticeable

that E_B is better than E_BASE with statistical signifi-

cance at the beginning and the forecast skills converge

by 3 h. Similar results are found for scales 70 and 140 km

although the differences are not statistically significant.

For 5.0mmh21 and all scales, E_B is slightly better than

E_BASE in the first 3 h and then slightly worse, al-

though most of the differences are not statistically
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significant. The FAR values indicate slightly better lo-

cation of convective cells by E_B.

In addition, some differences between the PSP scheme

and the warm bubble technique are worth pointing out

here. For instance, E_B also results in analyses with

more KEW than E_BASE over all wavelength ranges,

but the gains of KEWare generally smaller than those of

E_P and more evenly distributed over horizontal scales

(see Table 4), this is also a sign of localized perturbations

(the transformation of the perturbations into frequency

space contains components over a wide range of scales if

they are very localized in physical space). For the 1-h

forecasts (see Table 5), the gains of KEW almost decay

for all scales but not as much as in E_P, which indicates

that the warm bubble technique is more effective in

creating convective systems with larger circulation even

if its perturbations are of smaller amplitudes than those

of the PSP, and the perturbations grow upscale and ex-

hibit mesoscale influences in very short-term forecasts.

Furthermore, Fig. 10 compares the variation of surface

pressure tendency St within the assimilation cycles in

E_BASE, E_P and E_B. In all experiments, St arrives at

its peaks at each analysis step and decreases rapidly in

each forecast step. However, it can be seen that St be-

haves similarly in E_BASE and E_B whereas it remains

at a slightly higher value in forecast steps in E_P for

cycles between 0800 to 1800 UTC. This may be related

to the fact that the PSP scheme is designed to be more

effective in triggering convection at those specific times.

A side-effect would be to produce more imbalanced

model states as indicated by St.

To sum up, the use of the warm bubble technique

during assimilation cycling does not effectively increase

background ensemble spread of most model states ex-

ceptw, but it reduces theRMSE. Furthermore, it creates

more horizontal kinetic energy especially at convective

and mesoscales for analysis model states and almost

evenlymore vertical kinetic energy over different scales.

With respect to precipitation forecasts, it is advanta-

geous in the first 3 h. Compared to the PSP, the per-

turbations of the warm bubble technique may be of

smaller amplitude and very localized but they are less

imbalanced and seem to be more efficient in making

larger-scale convective systems.

c. Study 3

Figure 11 compares the vertical profiles of spread

and RMSE of the background ensemble in E_BASE,

E_SAN, E_SANP, and E_SANB, verified against radial

wind. In regard to background ensemble spread, it can

be seen that E_SAN produces much more spread than

E_BASE. E_SANB is close to E_SANandE_SANPhas

slightly more spread than E_SANunder 2 km.However,
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in regard to background ensemble RMSE, E_BASE

seems to be associated with the smallest RMSE and

E_SAN with the largest. This seems to be a common

downside of statistical schemes. For instance, as shown

in Piccolo et al. (2018), using samples of analysis incre-

ments to account for model error greatly increases the

ensemble spread and reliability but also increases

the RMSE for some fields. Nevertheless, with the help

of the PSP scheme or the warm bubble technique, the

RMSE can be reduced in E_SANP and E_SANB (es-

pecially in the latter one). This can be explained by the

fact that the SAN is flow independent and thus does not

represent model ‘‘errors of the day.’’ Combining it with

physically basedmodel uncertainty schemes such as the

PSP scheme or with real-time observation-dependent

warm bubble technique may compensate for some of

the deficiencies.

As seen in Table 4, E_SAN results in analyses with

considerably more total KE than E_BASE at both

heights, the gains are largest at 14–100km and decrease

rapidly with increasing scales. The gains in total KEW

are even more significant, dominated by contributions

FIG. 8. Comparion of E_BASE, E_P, and E_Bwith precipitation

observations by ensemble mean areal coverage (%) of hourly ac-

cumulated precipitation rate exceeding the threshold values (top)

1.0 and (bottom) 5.0mmh21 over the verification domain, aggre-

gated hourly over all forecasts initiated at 1800UTC. The error bar

represents plus and minus one standard deviation of the ensemble.

FIG. 7. Radar reflectivity composite at the elevation 0.58 at 1300
(initial time) and 1000 UTC 6 Jun 2016 (2-h forecast). (top row)

Observations; (second row) ensemble probability of E_BASE for

threshold 20 dBZ; (third and fourth rows) as in the second row, but

for E_P and E_B.
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FIG. 9. Verification of 6-h ensemble forecasts against radar-derived precipitation rate for comparison of

E_BASE and E_P in Study 1. (left) The first three panels illustrate the FSS values of experiments for the

threshold value of 1.0mmh21 as a function of forecast lead time for different scales 14, 70, and 140 km, re-

spectively. The last panel illustrates the FAR values for the threshold value of 1.0mmh21. (right) As in (left),
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from 14 to 100 km. For the 1-h forecasts, it can be seen in

Table 5 that the gains in KE at 14–100km have greatly

decreased at both heights but still remain large while the

gains at 100–300 and 300–1000km are relatively steady.

The gains in KEW have excessively reduced at both

heights, especially at 14–100km, and the reduction even

leads to smaller KEW than E_BASE over all scales at

5 km height. In addition, the kinetic energy spectra of

analyses and 1-h forecasts of E_SANP and E_SANB

exhibit the added effects of the PSP scheme and the

warm bubble, both of which amplify KE and KEW at all

scales and heights.

Figure 12 compares E_BASE, E_SAN, E_SANP, and

E_SANB with the radar reflectivity observation com-

posite at the initial time (1400 UTC 6 June 2016) and in

the 2-h forecast. At the initial time, E_SAN is supe-

rior toE_BASEat the highlighted location, so areE_SANP

and E_SANB. For the 2-h forecast, it is not clear whether

E_BASE or E_SAN is better at the marked location, but

E_SANP and E_SANB are better than E_BASE.

Figure 13 depicts the verification of precipitation rates

in 6-h ensemble forecasts based on the areal coverage.

For the threshold value 1.0mmh21, E_SANP pro-

duces most events, followed by E_SANB, E_SAN, and

E_BASE. Different from Fig. 8 for Studies 1 and 2, not

just some ensemble members but also the ensemble

mean approached and even exceeds the observations at

the late forecast lead times. For 5.0 mmh21, E_SAN

results in more events than E_BASE at the first and last

2-h forecast lead times. Both E_SANP and E_SANB

increase the areal coverages which are larger than that

of E_BASE except at the third forecast lead time.

Figure 14 shows the verification of precipitation fore-

casts based on the FSS. Recall that E_SAN is the ref-

erence run instead of E_BASE. Based on the FSS

values for the threshold value 1.0 mmh21 and all scales,

E_SAN is slightly better than E_BASE (some differ-

ences are statistically significant). E_SANP is slightly

better than E_SAN in the first 2 or 3 h and then slightly

worse. E_SANB is better than E_SAN up to 6 h but the

differences become smaller with increasing lead time.

For 5.0 mmh21, similar differences can be seen but the

advantage of E_SAN, E_SANP, and E_SANB over

E_BASE is much more significant at the beginning but

also declines gradually with increasing lead time. The

verification based on the FAR is also consistent with

the FSS.

To conclude, the SAN produces perturbations of

large amplitude and contributes greatly to the ensemble

spread but it does not necessarily improve the RMSE

within data assimilation cycles. It produces analyses

associated with much more horizontal and vertical ki-

netic energy at convective and mesoscales. The large

part of the added horizontal kinetic energy still remains

after 1-h forecasts while the added part of vertical ki-

netic energy at the convective scale may overdissipate.

The use of the SAN can significantly improve precipi-

tation forecasts up to 6 h. Moreover, combining the

SAN with either the PSP scheme or the warm bubble

technique results in a smaller RMSE in cycles, larger

FIG. 10. Half-hourly evolution of surface pressure tendency St within the assimilation cycles

in E_BASE, E_P, and E_B, averaged over all ensemble members for the period 0000 UTC

3 Jun–0000UTC 4 Jun. Recall that the assimilation window is 1 h. Peaks occur at analysis steps.

 
but for threshold value of 5.0mmh21. Each FSS (FAR) value is computed as an average over all 63 forecast runs

(the study period contains 7 days and each day has 9 forecast runs). The lines are marked as filled dots at the

forecast lead times where the differences compared to E_BASE are statistically significant at 95% confidence

intervals after 10 000 bootstrap resampling based on 63 difference samples. Same as Zeng et al. (2018), the

values of MSE and MSEref required for calculation of FSS (false alarms and hits for calculation of FAR) are

collected over all ensemble members when calculating the FSS (FAR).
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horizontal and vertical kinetic energy over all scales for

both analyses and 1-h forecasts, and further improve-

ments in precipitation forecasts. The latter combination

is overall more beneficial.

5. Summary

In this work, different approaches of representing

model error at small/unresolved scale are presented,

including the PSP scheme for turbulence (Kober and

Craig 2016; Rasp et al. 2018), an advanced warm bubble

approach, and small-scale additive noise (SAN; Zeng

et al. 2019). Their performance is investigated and

compared in the context of convective-scale data as-

similation and subsequent forecasts for a convective

period inGermany with weak synoptic forcing, using the

operational KENDA system at the DWD.

It is found that the application of the PSP scheme

results in more background ensemble spread in assimi-

lation cycles but its effects on the RMSE of background

ensemble are neutral. Moreover, it generates analysis

states with increased horizontal and vertical kinetic en-

ergy at convective and mesoscales. The added horizon-

tal energy declines much more slowly than the added

vertical energy in 1-h forecasts, and better precipitation

forecasts up to 3 h can be achieved. For the warm bubble

technique, it is shown that it does not effectively create

more ensemble spread but it is useful to reduce the

RMSE within assimilation cycles. It results in analysis

states with mild increase in horizontal kinetic energy

at convective and mesoscales and with almost equal

increase in vertical kinetic energy over different scales.

The added vertical energy is less than that added by the

PSP scheme but it dissipates more slowly. Also here

improved precipitation forecasts can be expected up to

3 h. In comparison, the use of the SAN contributes

greatly to ensemble spread but it results in a larger

RMSE in assimilation cycles. It significantly increases

horizontal and vertical kinetic energy at convective and

mesoscales in analyses. The large part of added hori-

zontal energy still remains after 1-h forecasts but an

overdissipation of vertical energy may occur at the

convective scale. Skills of precipitation forecasts can be

considerably improved up to 6 h. Combining the SAN

with the PSP scheme or the warm bubble technique re-

sults in smaller RMSE due to their advantage in flow

dependency. Both combinations also further amplify the

horizontal and vertical kinetic energy and generate better

precipitation forecasts than the SAN alone. However,

since the SAN and the warm bubble complement each

other more (the former one is useful to provide spread

and the latter one to reduce theRMSE), this combination

appears to be a better choice.

The improvements of precipitation forecasts are

positively correlated to the added horizontal kinetic

energy in analyses and forecasts. Comparatively, the

added vertical kinetic energy dissipates rapidly in the

forecasts and is therefore unlikely the dominant factor for

improvement at longer forecast lead time. Furthermore,

the vertical kinetic energy is also considered as an indi-

cator for model imbalance as surface pressure tendency

(Lange et al. 2017). The SAN is the most effective

FIG. 11. As in Fig. 6, but for comparison of E_BASE, E_SAN, E_SANP, and E_SANB in Study 3.
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method to improve the quality of precipitation forecasts

although it is associated with fairly imbalanced states as

shown in Zeng et al. (2019). However, imbalanced states

do not necessarily lead to better precipitation forecasts,

for instance, the RTPS as shown in Zeng et al. (2018). It

may be worth exploring possibilities that can improve

the balance of analyses of existing methods (e.g., the

SAN and PSP) while maintaining the skills of precipi-

tation forecasts. Furthermore, all these three methods

mainly introduce small-scale perturbations that usually

will be dumped within 6 h. The potential influences on

forecasts of longer lead time also require further inves-

tigation. At last, it should be noted that Sobash and

Wicker (2015) proposed an additive noise method to

add the storm-scale random noise where the absolute

innovation (observation–first guess) is greater than a

certain value (i.e., 10 dBZ). This method also can auto-

matically increase the storm through the comparison

between observation and first guess. Moreover, this

method can additionally suppress the spurious storms

through assimilation of no reflectivity data, since it also

FIG. 13. As in Fig. 8, but for for comparison of E_BASE, E_SAN,

E_SANP, and E_SANB with precipitation observations.

FIG. 12. Radar reflectivity composite at the elevation 0.58 at

1400 UTC (initial time) and 1600 UTC 6 Jun 2016 (2-h forecast).

(top row) Observations; (row two) ensemble probability of

E_BASE for threshold 20 dBZ; (rows three–five) as in row 2, but

for E_SAN, E_SANP, and E_SANB.
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FIG. 14. As in Fig. 9, but for comparison of E_BASE, E_SAN, E_SANP, and E_SANB in Study 3. Recall that

E_SAN is the reference run instead of E_BASE.
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enhances the spread at these areas as shown in Hu et al.

(2019). We have tested this method with the random

noise usingmodel truncation error samples in Zeng et al.

(2019), but no satisfactory results were obtained, but it

may be worth combining it with the SAN or PSP.
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——, T. Janjić, A. de Lozar, U. Blahak, H. Reich, C. Keil, and

A. Seifert, 2018: Representation of model error in convective-

scale data assimilation: Additive noise, relaxation methods

and combinations. J. Adv. Model. Earth Syst., 10, 2889–2911,

https://doi.org/10.1029/2018MS001375.

——, ——, M. Sommer, A. de Lozar, U. Blahak, and A. Seifert,

2019: Representation of model error in convective-scale data

assimilation: Additive noise based on model truncation error.

J. Adv. Model. Earth Syst., 11, 752–770, https://doi.org/

10.1029/2018MS001546.

Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate

and observation availability on convective-scale data assimi-

lation with an ensemble Kalman filter. Mon. Wea. Rev., 132,

1238–1253, https://doi.org/10.1175/1520-0493(2004)132,1238:

IOIEAO.2.0.CO;2.

JUNE 2020 ZENG ET AL . 2477

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/148/6/2457/4947966/m
w

rd190064.pdf by guest on 29 August 2020

https://doi.org/10.1175/JTECH-D-13-00152.1
https://doi.org/10.1175/JTECH-D-13-00152.1
https://doi.org/10.1002/qj.2904
https://doi.org/10.1002/qj.2904
https://doi.org/10.1029/2018MS001375
https://doi.org/10.1029/2018MS001546
https://doi.org/10.1029/2018MS001546
https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2


www.manaraa.com

Copyright of Monthly Weather Review is the property of American Meteorological Society
and its content may not be copied or emailed to multiple sites or posted to a listserv without
the copyright holder's express written permission. However, users may print, download, or
email articles for individual use.


